Report on the Building and Site Study for the New Fire Headquarters City of Peekskill

Report on the Building and Site Study for the New Fire Headquarters City of Peekskill

Submitted by Mitchell Associates Architects and Manitou, Inc.

In February, 2008 The City of Peekskill (City) retained Mitchell Associates Architects (MA) to undertake a study of the building and site needs of a new fire headquarters for the city. At that time, it was anticipated that the probable headquarters location would be adjacent the current station on Crompond Road. As the project progressed it was determined that it was necessary to examine a number of alternative sites, both from the point of view of the physical characteristics of the sites, and from the point of view of how their location would affect the Fire Department's operations. In April, 2008 the project scope was expanded to add the services of Dr. Charles Jennings of Manitou, Incorporated, to conduct a review of current Peekskill Fire Department station locations and evaluate the potential impact upon response times for the potential sites being evaluated.

In general, this study breaks down into the following tasks:

- TASK 1 - Programming
o Program
o Diagrammatic Floor Plans
o Diagrammatic Prototype Site Plan
- TASK 2 - MANitou Assessment
o Background: The City and Fire Department
o Problem Overview
o Response Time Analysis
o Headquarters Site Recommendations
o Suggestions for Further Study
- Task 3 - Evaluate Selected Sites
o Input the site data for five parcels into CAD to allow conceptual site plans to be drawn
o Provide a conceptual site plan for each of the candidate sites
o Commentary on the firematic services impact of the parcel choice
o Commentary on physical limitations to development of the candidate sites
o Reduce candidate site to two

MA
Mitchell
Associates
Architects

- Task 4 - Develop Advanced Schemes for 2 Final Parcel Choices
o Site development plans for the two candidate sites
o Preliminary floor plans for the two candidate sites
o One rendering of possible appearance
o One preliminary estimate of probable cost
o Partial Taking Diagram - Crossroads

TASK 1 - PROGRAMMING

o Program
o Diagrammatic Floor Plans
o Diagrammatic Prototype Site Plan
A series of meetings were held with Fire Department personnel to develop a facility assessment (program) which included descriptions of each space within the proposed headquarters, a diagram of each room, a diagrammatic prototype site plan, and a spreadsheet to determine the size of the building. The building design committee (Committee) met three times with the architect, and numerous times in subcommittee groups. The Committee members included:

- Chief John Pappas
- Assistant Chief Len Varella
- Assistant Chief Bob Fiorio
- Deputy Chief Jim Howard
- Capt Sue Sheridan
- Career Firefighter Kevin Bristol
- Career Firefighter Jim Ferris
- Firefighter Bruce Pappas
- Firefighter John Rose
- Firefighter Scot Rose
- Firefighter Dom Dipierro
- Firefighter Vin Dipierro
- Firefighter Gary Fetzer
- Sal Carano
- John Kelly
- Assistant Mayor, Don Bennett

A draft program was published on March 20, 2008 (appendix "A") that identified a headquarters building that would house the following entities:

- Fire Department Administration
- Columbian Engine
- Columbian Hose
- Washington Engine
- Cortland Hook and Ladder
- Centennial Hose
- Fire Patrol
- Career Firefighters

In addition, space in the apparatus bay was configured to allow for the possible future inclusion of Centennial Hose.

Mitchell Associates Architects

The program defines all of the required spaces for a modern, code compliant facility that meets current needs, with a modest attempt to allow for anticipated future needs. Diagrams of individual rooms were included in the program (appendix "B"). These room diagrams demonstrate that the stated functions for the rooms are met, and define the individual room sizes. The room sizes are summed up in a spreadsheet (appendix " A ") that incorporates projected areas for corridors and walls to define the total building size that resulted in the following areas:

Program Topic	Area	Percent
Apparatus Bay	7,048	20%
Firematic Support	3,360	9%
Administration	1,738	5%
Firefighters	3,823	11%
Bunking	1,693	5%
Public Spaces	8,387	23%
Miscellaneous Spaces	984	3%
Vertical Circulation	1,342	4%
Corridors and Walls	7,663	21%
Total Area		$\mathbf{3 6 , 0 3 8}$

Since it was impossible to determine at the time whether the selected site would allow a two story building or require a three story building, an analysis was made of the additional construction area that would be required for a third story. The result was that a third story would add approximately 860 square feet to the building size.

With this information a diagrammatic prototype site plan was developed to assist with a "first blush" evaluation of potential sites (Appendix " C "). The site plan defined that a site of approximately 2 acres would be required.

The results of Task 1 were presented to the City Council in July, 2008.

TASK 2 - MANITOU ASSESSMENT

o Background: The City and Fire Department
o Problem Overview
o Response Time Analysis
o Headquarters Site Recommendations
At the time this project began, it was anticipated that the probable headquarters location would be adjacent the current station on Crompond Road. That site has significant shortcomings due to its size and topography, and early in the project discussions began regarding identifying alternative sites that would be more easily built on. The areas of interest became the four parcels that adjoin the intersection of Broad and Park, the current station location at 701 Washington Street, and the original target site on Crompond Road.

In April, 2008 the project scope was expanded to add the services of Dr. Charles Jennings of Manitou Incorporated to conduct a review of current Peekskill Fire Department station locations to evaluate the potential impact upon response times for all potential sites being evaluated. This analysis included the production of maps, review of historic workload, and a documentation of the Department's current and future operating modes.

Mitchell Associates Architects

Potential changes to deployment and operations were evaluated with Department leadership and City officials, including addition of staff, increased staffing per apparatus, and use of stand-by crews. Other changes considered were the potential for volunteer personnel to respond to the station, rather than to the scene of emergencies, to determine what influence this potential change would have the programming for a new facility, and its affect on the suitability of sites and orientation of the facility.

Each site was listed for its impact on response times, indicating both improvements and increases in response times. Any significant changes in response time were indicated for each site, as appropriate. The orientation of apparatus ingress and egress was considered for each site, in order to minimize disruption to pedestrian and traffic flow, and assure timely response.

The potential to consolidate apparatus from existing facilities as well as reserve apparatus was also considered.

The Manitou report determined that the four parcels adjacent the intersection of Park and Broad are well positioned for proper response. It is appropriate to maintain a response capability at 701 Washington Avenue, but that site is not appropriately located for a main headquarters.

The Manitou report was presented to the City Council in early August, and is included as Appendix "D".

TASK 3 - EVALUATE SELECTED SITES

o Input the site data for five parcels into CAD to allow conceptual site plans to be drawn
o Provide a conceptual site plan for each of the candidate sites
o Commentary on the firematic services impact of the parcel choice
o Commentary on physical limitations to development of the candidate sites
o Reduce the number of candidate sites to two
Using satellite imagery as well as topographic and physical mapping, baseline maps were developed for the four parcels adjacent Park and Broad (Appendix " E "). Using the diagrammatic concept site plan developed in Task 1, preliminary concept site plans were drawn for each of the four sites (Appendix "E"), and presented at a City in Early August. At the Council meeting, the sites were discussed in great detail, and the following conclusions were drawn:
o Site 1 - The vacant parcel to the South West of the intersection, bounded by Park, Broad and Brown cannot reasonably be adapted for the fire headquarters due to the approximately 18 foot rise in grade going from Park to Brown Street.
o Site 2 - The potential parcel to the South East of the intersection, bounded by Park, Broad and Brown has a number of problems that were particularly troubling to the Fire Chief and his staff.

- There is approximately a ten foot rise in grade along Broad Street in front of what would be the front of the station. This would result in a multi-level "first" floor, including having the apparatus bay on several levels.
- Apparatus exiting on Broad in icy weather could encounter vehicles coming downhill from the South on Broad that would be unable to stop.
- There is an approximate ten foot drop in elevation from Brown to Park. This would result in a portion of the "first" floor being partially underground at the Brown Street end.
- There would be a steep driveway for responder vehicles that may already be coming downgrade along Brown, coming from the East. This could be problematic during icy conditions.
- The site probably does not allow for outdoor training or recreation.
o Site 3 - The parcel to the North East of the intersection, bounded by Park, Broad and Main has a mix of benefits and drawbacks:
- The parcel is large enough to allow outdoor training and recreation
- The site is not deep enough to allow drive through bays facing onto Broad. As a result, the apparatus bay needs to be divided into two spaces. One for the smaller trucks that would back in from Broad, and one for the two largest trucks that would enter from Park and drive through, exiting on Main.
- There is a ten foot rise in elevation from park to Main. This will result in a steep exit driveway for the largest apparatus as it approaches Main making for difficult exiting under icy conditions (Appendix " F ").
- At the point of exit onto Main, traffic from East is going downhill, and has a limited site line. This is hazardous and would require installation of a traffic signal to control traffic when fire apparatus exited the station.
- The ten foot rise would result in a portion of the first floor of the building to be partially underground at Main.
o Site 4 - The parcel to the North West of the intersection, bounded by Park, Broad and Main is currently the Crossroads shopping Center. From a physical point of view, it is an ideal site:
- This is the only site that is essentially flat.
- The site allows all fire apparatus to exit onto Broad Street with excellent lines of site.
- It is easy for the largest returning vehicles to have drive-through access.
- The site allows the building to be laid out so that the public entrance and public spaces front on Main Street, positively reinforcing the City's urban fabric.
- The site allows adequate on-site parking.
- The site allows outdoor training and recreation
o Site 5 - Subsequent to the August presentations we prepared an evaluation of the parcel adjacent the current station on Crompond Road (Appendix "F"). As the diagrams indicate, it would be extremely difficult to use this parcel. The apparatus bay would need to intrude into South Division Street 35 feet, necessitating the permanent closure of the street, and leaving the houses that currently front on South Division with no frontage. Additionally, the site rises approximately 20 feet from the frontage line to the proposed rear of the building. This would require extremely expensive construction with extensive sheeting and retaining walls if the soils are soft, or blasting if there is rock.

The Council members discussed sites number one through four at length, receiving input from the Fire Department, Building and Planning Departments and the City's Corporation Counsel. The Council agreed that parcels one and two were not tenable. For the reasons outlined above, and it was agreed that further evaluation should occur for sites three and four, the sites fronting on Main, on either side of Broad as Task 4.

- TASK 4 - DEVELOP ADVANCED SCHEMES FOR 2 FINAL PARCEL CHOICES

o Site development plans for the two candidate sites
o Preliminary floor plans for the two candidate sites
o Partial Taking Diagram - Crossroads
o One rendering of possible appearance
o One preliminary estimate of probable cost
Site plans were developed for sites three and four (Appendix "F"). The plan for site 3 was driven by the attempt to meet three goals:
o Work with the narrow site strung along Broad.
o Allow a drive through bay while respecting the needs of the adjacent church.
o Work with the ten foot grade change between Park and Main.
A site grading section was developed to determine the degree of difficulty that the ladder truck would face exiting onto Main. Combined with the limited site line looking east along main, and the descending grade for cars coming from the east, exiting for the ladder truck is problematic.

The plan for site 4 was approached to demonstrate a scheme for the redevelopment of the entire block. For this purpose, the scheme shows the Eastern half of the site occupied by the fire station, and the Western half occupied by "Incubator" buildings. The incubator buildings would have commercial and/or retail space on the first floor with two or more floors of residences above. In the event that the City chooses to not develop the entire block, Appendix J has a plan that indicates which of the current business would need to be taken.

A first floor plan was developed for site 3. First and second floor plans were developed for site 4, and were developed in close coordination with the program, satisfying all of its requirements. The program forecast that the total building would require 36,038 square feet of space. The building as designed is 33,752 square feet, a reduction of 6% that was achieved through an efficient layout.

Although not a part of the original project scope, elevations and a rendering were developed for the design for site 4 (Appendix "l"). It is our belief that the design satisfies all of the requirements of the building program, while achieving the intention of reinforcing and helping revitalize downtown, with a building that will be a landmark in the city at least until the end of the century.

A detailed, preliminary estimate of probable construction cost was developed by our estimating consultant, NASCO Construction Services (Appendix "J"). NASCO has been in business for over 30 years and provides in the range of 200 estimates per year. They are located in Armonk, and are very familiar with local construction costs. The anticipated "bricks \& mortar" cost will be $\$ 11,200,000$, if built in 2009. This cost is $\$ 331$ per square foot. Soft costs for this project are budgeted at $\$ 1,800,000$. In addition, a construction contingency budget has been set at $\$ 700,000$, bringing the total project cost to $\$ 13,700,000$, plus land acquisition.

List of Appendices

A. Program
B. Diagrammatic Floor Plans
C. Diagrammatic Prototype Site Plan
D. Manitou Report
E. Five Candidate Sites
F. Site Development Plans for Two Sites
G. Floor Plans for Two Sites
H. Partial Taking Diagram - Crossroads
I. Rendering
J. Preliminary Estimate

Mitchell Associates Architects －Emergency Services Facilities．

Fire Station Program Document

Project Name：Peekskill Fire Department Central Station
Program Meeting Date：2／21／08，2／27／08，3／13／08
Printout Date：October 21， 2008
Filename：Peekskill Fire Program．doc

When answering questions，indicate what you want in the future，not what you currently have．

A General Information

A1．Number of Members；total： $\mathbf{2 2 4}$ ；active： $\mathbf{1 9 0}$ ；female： $\mathbf{1 0}$ ；male：214；career： $\mathbf{2 4}$
A2．Building Committee：

Meeting Attendance：	2／21／08	2／27／08	3／13／08
A5．1．Chief John Pappas	区	区	区
A5．2．Asst．Chief Len Varella	区	区	区
A5．3．Asst．Chief Bob Fiorio	区	囚	区
A5．4．Deputy Chief Jim Howard	区	区	\square
A5．5．Capt Sue Sheridan	区	区	区
A5．6．Career F．F．Kevin Bristol	】	இ	\square
A5．7．Career F．F．Jim Ferris	区	区	\square
A5．8．F．F．Bruce Pappas	】	இ	】
A5．9．F．F．John Rose	区	\square	区
A5．10．F．F．Scot Rose	区	\square	\square
A5．11．F．F．Dom Dipierro	区	\square	\square
A5．12．F．F．Vin Dipierro	区	\square	\square
A5．13．F．F．Gary Fetzer	区	区	区
A5．14．Sal Carano	\square	区	凹
A5．15．John Kelly	\square	区	区
A5．16．Don Bennett	\square	\square	】

A3．Attorney：City of Peekskill Corporate Council Joseph Stargotti
A3．1．Phone \＆fax \＃：P：（914）734－4181 F：（914）734－4183
A4．Type of entity：
A4．1．Municipality：City Type：Combination Dept
A5．Number of Companies or Departments involved： 6 companies \＆career staff
A5．1．Columbian Engine
A5．2．Columbian Hose
A5．3．Washington Engine
A5.4. Cortland Hook \& Ladder
A5.5. Centennial Hose
A5.6. Fire Patrol
A5.7. Career
B Functional Activities in Building
B1. Types of response:
B1.1. Fire: Yes
B1.2. EMS: Yes (Paramedic)
B1.3. Heavy Rescue: Yes
B1.4. HAZ MAT: No
B1.5. Water Rescue: Yes
B1.6. Ambulance: Maybe ; Transporting: Maybe
B2. Training activities in building:
B2.1. Classroom
B2.2. Ladders, confined space, other hands on
B3. Training activities on site:
B3.1. Burn simulation trailer (8×40 ’ closed) [can be securely locked \& stay outdoors]
B4. Other uses of apparatus bay:
B4.1. Social events: No
B4.2. Craft fairs: No
B4.3. Other: No
B5. Sleeping Over:
B5.1. Short term: 1 night during storms (folding cots)
B5.2. Long term: Career firefighters
B6. Standing by :
B6.1. Daily: No
B6.2. Emergency: During weather emergencies
B6.3. Outsiders: Possible (10 people, a ladder \& engine)
B7. Emergency Shelter:
B7.1. Who stays in building: Maybe
B7.2. Special needs: No
B7.3. Special storage: No
B8. Firematic Business:
B8.1. Describe: Fire \& ALS- Possible EMS (by Firematic officers)
B9. Social Business:
B9.1. Describe: Various activities- Dinners \& banquets (by companies)
B10. Other: No auxiliary
B11. Meetings:

B11.1. Type: 6 Company meetings ; size: 20-50 ; frequency: 7 meetings/month (one for each company \& association)
B11.2. Type: Committee ; frequency: random
B11.3. Type: Trustee; size: 15; frequency: $\mathbf{1 / m o n t h}$
B11.4. Type: Officer; size:15; frequency: 1/month
B11.5. Type: Union; size: 24; frequency: 1/month
B11.6. Type: Association; size: 180 max; frequency: $\mathbf{1} /$ month
B12. Social Life:
B12.1. Daily recreation - describe: P.T.- Possible weight room and hoop in bay
B12.2. Periodic recreation - describe: As space allows (clam bake)
B12.3. Outdoor recreation - describe: As space allows, pavilion (picnic)
B13. Access control:
B13.1. Electronic access: Yes
B13.2. Vendor's access to drop off material: Maybe
B13.3. Will other fire companies park their apparatus in the bay under certain circumstances: Yes
.13.3.1. Describe: Mutual Aid
.13.3.2. Is their access to the building to be limited: Yes
.13.3.3. Describe: Access to all areas is not necessary

C Site TBD

C1. landscape elements: Possible bell. 52" dia, $\mathbf{5 , 0 0 0} \mathbf{l b}$ on 20’ tall garden tower.
C2. Number of primary responder parking spaces needed : As many as site will allow
Recreation requirements (Pavilion, grill, patio, etc.): As site allows
Training requirements: As site allows
C3. Utilities in the street at site (if there is a lateral into the site, identify that as well):
C3.1. Water: \mathbf{X}
C3.2. Sewer: \mathbf{X}
C3.3. Storm: \mathbf{X}
C3.4. Electric: \mathbf{X}
C3.5. Gas: X
C3.6. Phone: \mathbf{X}
C3.7. Cable: \mathbf{X}
C4. Electric company : Con Ed
C5. Gas company: Con Ed
C6. Telephone company: Light Path
C7. Cable company: Optimum
C8. Alarm/Security company: Will desire

APPARATUS

1

Apparatus Bays

1.1 Number of vehicles: $\mathbf{1 2}$; \# of bays: 10

1.1.1 Name: $130 \quad$; type: Engine \quad length: 31’ ; width: 8’6" ; frontline: Y

1.1.2	Name: 131	; type: Engine	; length: 30' ; width: 8'6" ; frontline: Y
1.1.3	Name: 132	; type: Engine	; length: 29' ; width: 8'6" ; frontline: \mathbf{Y}

1.1.4 Name: $\mathbf{1 3 3}$; type: Engine ; length: 30' ; width: 8’ $\mathbf{6 \prime \prime}$; frontline: \mathbf{Y}
1.1.5 Name: 134 ; type: Engine ; length: 34' ; width: 8’6" ; frontline: Y
1.1.6 Name: TL 45 ; type: Engine ; length: 45' ; width: 8’6" ; frontline: Y
1.1.7 Name: 39m1 ; type: Fly car ; length: 17’ ; width: 6’ ; frontline: Y
1.1.8 Name: 39m2 ; type: Fly car ; length: 17’ ; width: 6’ ; frontline: Y
1.1.9 Name: U17 ; type: Utility ; length: 19' ; width: 8’ $\mathbf{6}^{\prime \prime}$; frontline: \mathbf{N}
1.1.10 Name: 1404 ; type: Arson Vehicle ; length: 21' ; weight: 8’ ; frontline: N
1.1.11 Name: Spare 1 ; type: TBD ; length: ___ ; weight: ___ frontline:
1.1.12 Name: Spare 2 ; type: TBD ; length: ___ ; weight: ___ ; frontline:
1.2 Type of bays:
1.2.1 Drive-through: \mathbf{X}; quantity: what site allows (2)
1.2.2 Double deep: \mathbf{X}; quantity: what site allows (2)
1.2.3 Single deep: \mathbf{X}; quantity: $\mathbf{8}$
1.3 Wash bay: X ; Where: Wash in one bay
1.4 Plan for future expansion of bays: No
1.5 Overhead doors:

1.5.1 Front:

1.5.1.1 Number: 10
1.5.1.2 Width: $\mathbf{1 4}$; Height: 14
1.5.1.3 Windows: Yes
1.5.2 Rear:
1.5.2.1 Number: 2
1.5.2.2 Width: $\mathbf{1 4}$; Height: 14
1.5.2.3 Windows: Yes
1.6 Pedestrian doors:

1.6.1 Number: Whatever is required

1.6.2 Locations: Where they are needed
1.7 Number of gear lockers: $\mathbf{6 0}$; now: $\mathbf{3 0}$; later: $\mathbf{3 0}$
1.7.1 Location: $\mathbf{2 0}$ on apparatus wall for volunteers, $\mathbf{2 5}$ lockable in career gear locker room
1.7.2 Locker size: 18" W x 24" D
1.7.3 Ducted air for gear drying tubes: Yes
1.7.4 Air for boot drying: Yes
1.8 Signage requirements: Plasma
1.9 Trench drains: Yes ; Layout: Center line of trucks (one is 8" at designated location for washing)
1.10 Wall mounted hose reels: Yes; Quantity: 1 per 2 vehicles; Tempered: Yes
1.11 Fume exhaust: Yes ; Type: TBD ; Later: Now
1.12 Truck fills:
1.12.1 Wall hydrant: Yes; Quantity: 2 or $\mathbf{3}$ based on bay size \& layout
1.12.2 Outdoor hydrant: Yes; Quantity: 1
1.13 Overhead electrical drops: Yes ; Quantity: All
1.14 Overhead airdrops: Yes; Quantity: All
1.15 Compressed air for tools: Yes (in work room)
1.16 Sinks: Yes ; Where: TBD (maybe 2)
1.17 Drench shower: Yes
1.18 Water Fountain: Yes
1.19 Other equipment: None
1.20 Epoxy flooring: Yes
1.21 Wall construction type: Concrete block
1.22 Size: $\mathbf{7 0 4 8}$ sq ft

FIREMATIC SUPPORT

1A Mezzanine
1A. 1 Size: 60×16; or $\mathbf{9 6 0}$ sq ft

2 Storage Room \#1

2.1 Use: Miscellaneous firefighting equipment
2.2 Size: $\mathbf{2 0 0}$ sq ft

3 Storage Room \#2
3.1 Use: Out of service bunker gear
3.2 Size: $\mathbf{2 0 0}$ sq ft

4 Storage Room \#3

4.1 Use: TBD
$4.2 \quad$ Size: $\mathbf{2 0 0}$ sq ft

5 Storage Room \#4
5.1 Use: TBD
5.2 Size: $\mathbf{2 0 0}$ sq ft

6 Career Bunker Gear Storage Room
6.1 Location: Where it fits- near apparatus room
6.2 Number of Lockers: 25
6.3 Locker Type: Enclosed, 18" w x 24" deep
6.4 Size: $\mathbf{2 1 1}$ sq ft

$7 \quad$ Hose Storage

7.1 A room, or on the floor: Room
7.2 Equipment: Racks, washer, dryer \& winder
7.3 Size: $\mathbf{2 0 3} \mathbf{~ s q ~ f t ~}$
7.4 Adjacencies: Apparatus floor

8 EMS Storage Room
8.1 Security: Absolutely
8.2 Size: $103 \mathbf{s q ~ f t}$
8.3 Adjacencies: Apparatus bay
8.4 Comments: 5 oxygen bottles

9 Engineers Work Room
9.1 Mechanic: Yes
9.2 Workbench: Yes
9.3 Tool storage: Yes
9.4 Stationary power tools: Yes
9.5 Air: Yes
9.6 Water: Yes
9.7 Flammable Storage : Yes
9.8 Location: Wherever it fits
$9.9 \quad$ Size: $\mathbf{2 6 1} \mathbf{~ s q ~ f t}$
9.10 Adjacencies: Apparatus bay

10 DeCon/Laundry

10.1 Sink(s): Yes ; Foot Pedal
10.2 Gear washer/extractor: Yes
10.3 Gear dryer: Yes
10.4 Residential type clothes washer \& dryer: Yes
10.5 Ventilated gear racks: Yes
10.6 Drench shower: Yes ; Where: Decon
10.7 Backboard/Etc. cleaning: Not necessary
10.8 Holding tank: Yes if Decon is possible
10.9 Red bag storage cabinet: No

11 Hazardous Waste Disposal
11.1 Size: $\mathbf{1 1} \mathbf{~ s q ~ f t}$
11.2 Adjacencies: Ems storage, Decon

12 SCBA Compressor Room
12.1 Sound attenuation panels: Yes
12.2 External feed lines: Yes
12.3 Size: $\mathbf{9 0} \mathbf{~ s q ~ f t}$
12.4 Comments: Wall to fill station room may not get built initially if they continue to use the existing unitary system

13 SCBA Fill Station Room

13.1 "Public" access: No
13.2 Filling station: Yes
13.3 Size: $\mathbf{8 5} \mathbf{~ s q ~ f t}$

14 SCBA Cleaning \& Repair Room
14.1 Sink: Yes
14.2 SCBA storage: Yes
14.3 SCBA repair: Yes
14.4 Air Bottles - Size \& Quantity: 80-30 minutes/ea
14.5 Size: $\mathbf{7 1} \mathbf{~ s q ~ f t}$

15 Janitor's Closet

15.1 Size: $\mathbf{6 4}$ sq ft

16 Apparatus Floor Rest Rooms

16.1 Quantity: 2, Unisex

16.2 Fixture: Sink, toilet \& urinal
16.3 Showers: No
16.4 Lockers: No
16.5 Size: 75 sq ft

17 Radio Room

17.1 Location: Central location
17.2 View control: Maximum view
17.3 Seating for how many: 2
17.4 Door operator switches: Yes
17.5 Traffic device control: If needed
17.6 Light switches for app bay: Yes ; Outside: Yes
17.7 Internal paging system: Yes
17.8 Computer equipment: Yes
17.9 File cabinets: Yes
17.10 Rechargeable items (flashlights, plectrons): Yes
17.11 Lockable storage: Yes
17.12 Assumed minimum size: $\mathbf{1 1 4} \mathbf{~ s q ~ f t}$

ADMINISTRATION

18 Firefighter's Lobby

18.1 Lobby Size: 220 sq ft

19 Conference Room

19.1 Uses: Multiple
19.2 Seat how many: at table: 12; at wall: 16
19.3 Is there a workstation with a computer to be shared by all users: Yes
19.4 Size: $\mathbf{4 4 7} \mathbf{~ s q ~ f t}$

20 Chiefs' Office

20.1 Seat how many: 3
20.2 Size: $\mathbf{2 4 7} \mathbf{~ s q ~ f t}$

21 Volunteer Line Officers

21.1 Seat how many: 5

21.2 Size : $\mathbf{2} 21 \mathbf{~ s q ~ f t ~}$

22 Career Staff Office
22.1 Name of Occupant: Union, Paramedic, Shift Supervisors, Safety Officer
22.2 Size: $\mathbf{2 2 1} \mathbf{~ s q ~ f t ~}$

23 Department Surgeon
23.1 Seat how many: 1
23.2 Is there a workstation with a computer: Yes
23.3 Size: $\mathbf{1 0 3}$ sq ft
23.4 Comments: Scale, sink, exam room

24 Association Office

24.1 Seat how many:1
24.2 Is there a workstation with a computer: Yes
24.3 Size: $\mathbf{8 1} \mathbf{~ s q ~ f t}$

25 Fire Prevention \& Fire Training Office
25.1 Size: $\mathbf{1 0 0} \mathbf{~ s q ~ f t ~}$
25.2 Comments: Storage also

26 Records Storage
26.1 Size: $\mathbf{9 8} \mathbf{~ s q ~ f t}$

FIREFIGHTERS

27 Firefighter's Recreation Room

27.1 Uses: Multiple Uses
27.1.1 Quiet area
27.1.2 Game area
27.1.3 T-V area
27.1.4 Bar area
27.2 Number of chair seating: 70
27.3 Couch: Yes ; seats how many: What space allows
27.4 TV: X ; Size: Large Screen
27.5 Card table: \mathbf{X}; how many: As space allows
27.6 Coffee maker: X

27.7 Microwave: X

27.8 Popcorn maker: \mathbf{X}
27.9 Bulletin board: X ; Size: Several
27.10 Size: 1194sq ft

28 Day Room

28.1 Kitchen/Kitchenette: X
28.2 Dining/Eating: X
28.3 Living/T-V: X
28.4 Total Day Room Size: $\mathbf{8 2 3}$ sq ft

29 Firefighters' Rest Rooms

29.1 Size: 271 sq ft

30 Exercise
30.1 Size: $\mathbf{1 , 0 0 0}$ sq ft
30.2 Equipment:
30.2.1 Cardio: X
30.2.2 Weights: X
30.2.3 Weight Machines: X

31 Lockers/Bath

31.1 Showers: Yes
31.2 Lockers: Yes
31.3 Size: $\mathbf{5 3 5}$ sq ft

BUNKING

32 Single Bed Rooms

32.1 Number of rooms: 6
32.2 Beds per room: 1
32.3 Storage: One unit
32.4 Desks: yes
32.5 Size: (6) @ $\mathbf{8 8}$ sq ft

33 Double Bed Rooms

33.1 Number of rooms: 4
33.2 Beds per room: 2

33.3 Storage: 2 units

33.4 Desks: yes
33.5 Size: (4) @ $\mathbf{1 3 9 ~ s q ~ f t ~}$

34 Bunker's Bathrooms

34.1 Quantity: 2
34.2 Details: Toilet, urinal, shower \& sink
34.3 Size: (2) @ 88 sq ft
34.4 Comments: In vicinity (immediate)

35 Career Personnel Lockers

35.1 Size: $\mathbf{3 8 1}$ sq ft
35.2 Comments: designed to allow 42 lockers

36 Career Laundry Room
36.1 Size: 52 sq ft
36.2 Comments: Stacking washer \& dryer

PUBLIC SPACES

37 Public Entry Area

37.1 Trophy case: Yes
37.2 Bulletin board: Yes
37.3 Plaque: Yes
37.4 Lobby Size: 266 sq ft

38 Coat Room

38.1 Number of coats: $\mathbf{2 6 0}$ for $\mathbf{3 0 0}$ occupancy
38.2 Size: $\mathbf{2 0 4}$ sq ft

39 Museum
39.1 Uses: Yes
39.2 Size: $\mathbf{1 5 7 8}$ sq ft
39.3 Comments: Multiple- hand drawn

40 Meeting/Training Room

40.1 Public access: Yes

40.2 Uses:
40.2.1 Department meetings: Yes
40.2.2 Training: Yes
40.2.3 Fundraising dinners: Yes
40.2.4 Political/Municipal: Yes
40.2.5 Boy Scouts or other similar groups: Possibly
40.2.6 Rental: No
40.3 Purpose: Various
40.3.1 Seating: 300
40.4 Trophy case: Yes
40.5 Whiteboard: Yes
40.6 Bulletin board: Yes
40.7 TV: Yes; where stored: ceiling?
40.8 Size: 4,500 sq ft
40.9 Comments: Needs a divider

41 Meeting/Training Room Table \& Chair Storage
41.1 Table rack quantity: 5 rectangle \& 4 round
41.2 Chair rack quantity: 16
41.3 Size: 446 sq ft

42 Meeting/Training Room A/V Equipment
42.1 Size: $\mathbf{1 3 0}$ sq ft

43 Kitchen
43.1 Uses: Commercial
43.2 Equipment types and size:

Refrigerator: Yes
Sink(s) Pot: Yes; Hand: Yes; Scrub: Yes; Disposal: Yes
Dishwasher: Yes
Stove: Yes
Oven: Yes
Cook top: Yes
Hood: Absolutely
Other equipment: Ice machine
43.3 Center Island: Yes
43.4 Shuttered opening: Yes
43.5 Door to exterior: Yes
43.6 Dish storage: Yes
43.7 Pantry/food storage: Yes
43.8 Locked storage: Yes
43.9 Automatic shut off of heat generating equip @ fire call w/ manual reset: Yes
43.10 Size: $\mathbf{4 0 0}$ sq ft

44 Pantry

44.1 Size: 237 sq ft
44.2 Comments: (7) locked cabinets @ 2'x4' plus open shelving

45 Public Rest Rooms

45.1 Handicapped accessible: Yes
45.2 Size: $\mathbf{3 6 0}$ sq ft

MISCELLANEOUS SPACES

$46 \quad$ Entry Vestibules (2)

46.1 Size: Public entry @ 128 Firefighter entry @ $\mathbf{6 0}$ sq ft

47 House Keeping Storage

47.1 Size: (1) per floor @ $\mathbf{5 0}$ sq ft

48 Janitors Closet
48.1 Size: $\mathbf{2}^{\text {nd }} \boldsymbol{\&} \mathbf{3}^{\text {rd }}$ floor @ $\mathbf{5 0}$ sq ft
48.2 Comments: Apparatus floor janitor closet covers $\mathbf{1}^{\text {st }}$ floor

49 Generator
49.1 Size: $\mathbf{1 5 6}$ sq ft

50 File Server
50.1 Size: $\mathbf{8 0}$ sq ft

51 Mechanical, Electrical, Plumbing, HVAC, Sprinkler, Alarm, etc.
51.1 Fuel type at site: Gas- Natural
51.2 Heating type in apparatus bay: Radiant Slab
51.3 Heating type elsewhere: Ducted hot \& cold air
51.4 Building to be sprinklered: Yes
51.4.1 Adequate water pressure: Yes
51.4.2 Storage tank: No
51.5 Hose bibs for exterior: Yes
51.6 Bay lighting type: Fluorescent
51.7 Site lighting type: Sodium or equal
51.8 Generator: X ; Describe: To power whole building
51.9 Location of generator: TBD
51.10 Circuits on generator: All
51.11 Security: Yes
51.12 Keyless entry: Yes ; Describe: Swipe Card
51.13 Alarm: Yes
51.14 Siren: No
51.15 Hazardous waste handling: No
51.16 Size: $\mathbf{3 6 0}$ sq ft

Peekskill Central Fire Station Space/Usage Analysis - 2nd Draft - 2 Story

Program Item	Room Name	$\begin{gathered} \text { 1st } \\ \text { Floor } \\ \text { Area } \end{gathered}$		$\begin{gathered} \hline \text { 3rd } \\ \text { Floor } \\ \text { Area } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Area All } \\ \text { Floors } \end{array}$	Room Name	$\begin{gathered} \hline \text { 1st } \\ \text { Floor } \\ \text { Area } \end{gathered}$	$\begin{gathered} \hline \text { 2nd } \\ \text { Floor } \\ \text { Area } \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline \text { Area All } \\ \text { Floors } \\ \hline \end{array}$
	Apparatus Bay					Area Subtotals				
1	Apparatus Bay	7,048			7,048	Bay	7,048			7,048
	Subtotal - Apparatus Bay	7,048			7,048	Firematic Support	2,400			2,400
	Firematic Suppor					Mezzanine		960		960
1.1	Mezzanint		960		960	Office \& Living	9,400	8,567	0	17,967
						Walls \& Circulatior				
2	Storage Room \#1	200			200	Apparatus Bay Walls @ 9\%	599			599
3	Storage Room \#2	200			200	Firematic Support Walls @ 12\%	288	1,000	0	1,288
4	Storage Room \#3	200			200	Firematic Support Circulation @ 15\%	360	1,251	0	1,611
5	Storage Room \#4	200			200	Office Area Walls @ 22\%	2,068	1,885	0	3,953
6	Career Bunker Gear Storage	211			211	Office Area Circulation @ 18\%	1,692	1,542	0	3,234
7	Hose Storage	203			203	Subtotal - Walls \& Circulation	5,007	5,678	0	10,685
8	EMS Storage	103			103	Total >>	23,855	14,245	0	39,060
9	Engineers Work Room	261			261					
10	DeCon/Laundry	234			234					
11	Hazardous Waste Disposal	14			14		sArea			
12	SCBA Compressor	90			90	Total Walls \% >>>	12.4\%	20.3\%	\#DIV/0!	15.0\%
13	SCBA Fill	85			85	Total Corridor \% >>>	8.6\%	19.6\%	\#DIV/0!	12.4\%
14	SCBA Cleaning \& Repair	71			71					

ROOM \#6

ROOM \#7

ROOM \#8

MITCHELL AGSOC. ARCHTECTG
EMS STORAGE
PLOT DATE: 3/18/2008
SCALE: $\quad 1 / 4^{\prime \prime}=1^{\prime}-O^{\prime \prime}$
C:\Data\J Drive\Peekskil\|\ndividual Rooms\8 - EMS Store Room

MITCHELL ASSOC. ARCHITECTS
ENGINEER'S WORKROOM
PLOT DATE: 3/18/2008
SCALE: $\quad 1 / 4^{\prime \prime}=1^{\prime}-O^{\prime \prime}$
C: DDaiol D Divel Peegkill

MITCHELL ASSOC. ARCHITECTS
HAZARDOUS UASTE
PLOT DATE: 3/18/2008
SCALE: $1 / 4^{\prime \prime}=1^{\prime}-O^{\prime \prime}$

MITCHELL ASSOC. ARCHITECTS
SCBA
PLOT DATE: 3/18/2008
SCALE: $1 / 4^{\prime \prime}=1^{\prime}-O^{\prime \prime}$

MITCHELL ASSOC. ARCHIT
JANITOR'S CLOSET
PLOT DATE: 3/18/2008
SCALE: $\quad 1 / 4^{\prime \prime}=1^{\prime}-O^{\prime \prime}$

MTCHELL ASSOC. ARCHTECTS
APPARATUS BAY Bathroom
PLot date: 3/18/200
SCALE: $\mathrm{V} / 4=1$

MTCHELL ASSOC. ARCHTECTS
RADIO ROOM
PLot date 3/18/2008
scale
+

ROOM \#19

ROOM \#20

MITCHELL ASSOC. ARCHITECTS
CHIEF'S OFFICE
PLOT DATE: 3/18/2008
SCALE: $\quad 1 / 4^{\prime \prime}=1^{\prime}-O^{\prime \prime}$

MITCHELL ASSOC. ARCHITECTS
volunteer line officers
\ddagger CAREER STAFF OFFICE
PLOT DATE: 3/18/2008
SCALE: $1 / 4^{\prime \prime}=1^{\prime \prime}-0^{\prime \prime}$

ROOM \#27

ROOMS \# 30 \#31

MITCHELL ASSOC. ARCHITECTS
1.000 SQ FT GYM W/ BATH
PLOT DATE: 3/18/2008
SCALE: $1 / 8^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

MTCHELL ASSOC. ARCHTECTS
BUN ROOM
PLOT TATE: 18182008
SCALE

MITCHELL ASSOC. ARCHITECTS
BUNKERS BATHROOM
PLOT DATE: $3 / 19 / 2008$
SCALE: $1 / 4^{\prime \prime}=1^{\prime}-O^{\prime \prime}$
C:IDatalU DrvelPeeksk\|ll ndvivdual Roons 34 - Bunkers Bathroom

MITCHELL ASSOC. ARCHITECTS
CARREER PERSONNEL LOCKERS
PLOT DATE: 3/19/2008
SCALE: $1 / 4^{\prime \prime}=1^{\prime}-O^{\prime \prime}$

MTCHELL ASSOC. ARCHHECTS
$C O A T R O O M$
PLOT DATE: 3/19/2008
SCALE: $\quad 1 / 4^{\prime \prime}=1^{\prime}-O^{\prime \prime}$
C:IData \ D Drve\Peekskil\|

ROOM \#39

MITCHELL ASSOC. ARCHITECTS
MUSEUM
PLOT DATE: 3/20/2008
SCALE: $1 / 8^{\prime \prime}=1^{\prime}-O^{\prime \prime}$

ROOM \#41

SEATING FOR 300 (EITHER AT ROUNDS OR RECTANGLES)
300 CHAIRS (I9 STACKS)
24 ROUND TABLES (4 RACKS)
30 RECTANGULAR TABLES (5 RACKS)

ROOM \#42

MITCHELL ASSOC. ARCHITECTS
A/V
PLOT DATE: 3/99/2008
SCALE: $1 / 4^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

MITCHELL ASSOC. ARCHTECTS
KITCHEN
PLOT DATE: 3/19/2008
SCALE: $1 / 4^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

ROOM \#44

$\begin{array}{\|c\|} \hline \text { MITCHELL ASSOC. ARCHTTECTS } \\ \hline \text { PANTRY } \end{array}$	
SCALE: $1 / 4^{\prime \prime}=1^{\prime}-0^{\prime \prime}$	

ROOM \#45

ROOM \#49

MITCHELL ASSOC. ARCHITECTS
GENERATOR
PLOT DATE: $3 / 19 / 2008$
SCALE: $1 / 4^{\prime \prime}=1^{\prime}-O^{\prime \prime}$
E:\Data \backslash Drive \backslash PeekskIIIVndividual Rooms $\backslash 49-$ Generaator

Diagrammatic Prototype Site Plan nts

PEEKSKILL FIRE STATION ANALYSIS MEMORANDUM

Recommendations

Based on the analysis undertaken for this project, we recommend that the best location for a consolidated facility would be adjacent to the intersection of Park and Broad Streets. Our techniques do not allow a further refinement of the location, and for response time purposes, either of the four sites bordering this intersection are equally acceptable. The site at Park Street and James Street does not allow direct access to an arterial street. The site on Washington Street would result in a degradation of response times, particularly if all units are moved to this location.

Recommendations among the four sites must be made on architectural, site acquisition, and environmental considerations. These considerations are not a part of this analysis. The orientation of these sites with respect to Park or Broad Streets assumes that a traffic control device will be installed to permit apparatus to depart the fire station without delay. Consideration should be given to installation of traffic light pre-emption for intersections at Main and Broad Streets and Crompond Road and Broad Streets at a minimum.

We analyzed an option to consolidate all facilities into one location, and also evaluated retention of the Washington Street station along with new facility consolidating remaining apparatus and equipment at Broad and Park Streets. Although a one-station option would be acceptable, the two-station option maintains response times in the extreme southern portion of the City.

Background: The City and Fire Department

The City's protection boundaries are coterminous with the City limits, with the exception of a small area of protected under contract with the Dogwood Road Fire Protection District. This contract is expiring and subject to renewal in the near future. ${ }^{1}$ Any change in the contract would not have a bearing on the issue of station locations. A total land area of approximately 4.3 square miles is protected.

Peekskill's population is growing. In the 2000 Census, the City had 22,441 residents. Estimates for 2006 show the population at 24,601. A combination of new housing developments and higher occupancy in existing buildings is causing an increase in population. Although the City is primarily residential in character, it has a mix of industry, commercial, institutional uses and a "downtown" section. Being along the Hudson River, the waterfront and recreational boating cause some demands for fire service. A predominance of 100 year-old Victorian and wood frame structures pose a challenge for the Department. Many of these structures have been converted to multifamily use, adding to the density of population, and posing challenges in the event of fire. A few high-rise buildings are also present in the City. These are residential, and are not equipped with sprinklers.

The Peekskill Fire Department (PFD) is a combination fire department, primarily relying on volunteers, but with paid apparatus operators (driver/operators). All officers are volunteers, with a Chief being elected by the membership. As a municipal entity, the City Council fulfills the role of a Board of Fire Commissioners, setting and approving the budget, and providing oversight. Like many older cities in

1 The area under contract is Dogwood Road, from Highland Avenue to near Radio Terrace.
the area, the Department was founded on the Company system, with each company being formed by a grassroots effort of neighbors in a particular part of the City. The oldest company is in excess of 130 years old. The Department is composed of companies, who until recently, operated semi-independently in administrative matters. New members now join the "Peekskill Fire Department", rather than a particular company. The companies continue to exist in various states of vigor, but now play no operational role. They will continue to serve as social entities and a source of affiliation for members of the Department.

The PFD operating strategy is for units assigned to an alarm to leave immediately with a crew of one person, and for volunteers to respond directly to the scene in their personal or departmental vehicles. In most cases, volunteers are reported to arrive approximately the same time as the fire apparatus. Only paid personnel drive and operate major fire apparatus. In the event of multiple incidents or a major event, a career staff member is recalled to place any remaining apparatus into service. Volunteer personnel provide the staffing to do everything else, including incident scene management. The Chief reports that a fire call involving a building will result in a turnout of $20-30$ volunteers.

Paid staff are deployed with one person per apparatus. Contractually, a minimum of five staff must be working 24 hours a day. This means that when the City operates at minimum staffing (which is frequent), only five of the city's six companies are actually staffed and able to respond. ${ }^{2}$ This career crew also staffs two emergency medical services (EMS) advanced life support vehicles. These vehicles, known as "fly cars", provide advanced life support services to the City of Peekskill and Town of Cortlandt. These two EMS vehicles are cross-staffed with fire companies, meaning that when they respond, that their fire company goes out of service until they return from their call. A cadre of the PFD paid staff are certified as paramedics, and they are assigned to the companies housed with the fly cars.

The fly cars are not equipped to transport patients, and rely on a response from one of the volunteer ambulance corps to take the patient from the scene to the hospital. On transports where advanced life support skills are needed, the firefighter/paramedic will go to the hospital with the patient. These types of calls for service can result in relatively long "out-of-service" times.

Table 1: Peekskill Fire Department Station and Unit Information

Station Number	Location	Apparatus	Description
1	800 Block Main Street	TL-45	Cortlandt Hook and Ladder
3	Broad St. and Crompond Rd.	E133	Washington Engine
4	Dayton Lane	E132	Columbian Hose
5	Broad St. and Crompond Rd.	E131, 32 Medic 1	Columbian Engine
6	701 Washington St	E130, 32 Medic 2	Centennial Hose

The PFD fleet consists of four engine companies, a rescue company, and one ladder company. The configuration of companies and their locations are given in Table 1.

The City's four engines, rescue, and ladder company are dispatched to incidents as shown in Table 2. There are no pre-determined extra alarm assignments. The officer in charge at the scene calls for

[^0]apparatus as needed, using the City's resources first, and then calling for mutual aid from surrounding departments.

Table 2: Apparatus Assignments

Type of Alarm	Engines	Ladder	Rescue
Structural Fire	2	1	1
Automatic Fire Alarm	1	1	1
Carbon monoxide alarm		1	1
Outside fire	1		
Vehicle fire on highway	2		

The PFD responds to approximately 800 incidents per year. These include fires, automatic alarms, auto accidents, outside fire, water problems, hazardous conditions such as gas leak, and related incidents. They also respond as firefighters to EMS assists in cases where the Peekskill Volunteer Ambulance Corps has only one member responding, or no ambulance available. This EMS role is separate and distinct from the advanced life support (ALS) service delivered Town-wide through the fly car system. These two units respond to approximately 2000 calls for service per year, including responses into the Town of Cortlandt. ${ }^{3}$

The Project

Manitou, Inc. was retained by Mitchell Associates Architects (MA) of Voorheesville, New York to provide facility location services in connection with design of a new fire station for the City of Peekskill. This new facility was intended to consolidate operations, currently spread around five different facilities housing six fire companies.

The City, through Mitchell Architects, provided a list of seven sites for consideration:

1. The current fire station site (Washington Engine and Columbian Engine) at Broad Street and Crompond Road
2. 701 Washington Street, current site of Centennial Hose Company

3-6. The four corners of the intersection of Park and Broad Streets
7. Corner of Howard Street and Park Street (location of municipal parking garage)

Manitou was tasked with evaluating these sites for a potential consolidated fire station. The basic objective of any fire station location exercise is to locate the facility so that it minimizes either a) the travel time to actual incidents; or b) minimizes the travel time to all portions of the service area. This question is largely a values question, but in a small area such as Peekskill, the difference between these two answers is minimal.

Moving from a five-station configuration to a one station configuration in an area less than five square miles will result in a small increase in response time to some incidents. The question is - "Is that difference meaningful?"

[^1]Any potential change in response time must be weighed the improved efficiency in operations that should result from having all personnel housed in the same facility.

Response Time Analysis

This section of the memo will deal with the distribution of equipment and stations, and the patterns in demand for service as they relate to station locations.

Current Station Distribution

The current five station locations are distributed throughout the City, as indicated in Figure 1. Of the locations, Cortlandt Hook and Ladder and Peekskill Fire Patrol do not house engine companies, meaning that they do not carry water for fire attack purposes. They perform specialized functions of rescue and forcible entry.

Figure 1: PFD Existing Stations and Companies

Three stations are concentrated in the City's center, with one being located in the southern end of the City, and the other in the City's far northeast. Of the existing facilities, the Columbian Hose company, located off Dayton Lane at the rear of the Beach Shopping Center, is located very close to the City's boundaries, which limits its efficiency. Several of the stations are very close to each other, effectively covering the same area.

Figure 2 shows estimated driving time from each of the fire stations housing engine companies. The current locations allow almost the entire City to be within three minutes driving time of an engine company, assuming that all companies are in service.

Figure 2: PFD Existing Engine Coverage
When evaluating station locations, it is important to remember that in a volunteer fire department, we must be concerned with not only the apparatus, but the members' ability to arrive on the scene of a reported emergency. Because members respond from home or work directly to the scene of emergencies, this important component of response will not change.

Ladder company service is currently provided from a station at 828 Main Street. The coverage from this facility is good, although it is not located in the center of the City. Figure 3 shows that it can cover most of the City within 4 minutes. Insurance Services Office recommendations call for ladder companies to be within 2.5 miles of built-up areas, which is met from its current location.

Figure 3: PFD Existing Ladder Coverage

Calls for Service

Calls for service are evaluated by looking at their location relative to the fire stations. A review of fire, EMS (with fire response), and "other" calls for service shows that these incidents are distributed throughout the City, but concentrated in the more dense downtown section. This affirms the philosophy of putting more resources in the City's downtown for reasons of proximity to incidents, and for being centrally located for purposes of emergency response throughout the City.

Station Location Analysis

In evaluating the sites to be considered, they can be broken down to two general areas: the intersection
of Broad and Park Streets, and 701 Washington Street. Sites within a few blocks of these sites (the existing fire station at Broad Street and Crompond Road, and the parking garage at Park and Howard Streets) do not need to be examined separately for response time purposes. The difference in time over a few block is negligible, and site characteristics are predominant in analysis of a specific plot of land.

Broad Street and Park Street Site

Figure 4: Proposed Site at Broad and Park Streets
Figure 4 shows the response time contours from a facility at Broad and Park Streets. As can be seen, most of the City can be served within 4 minutes driving time. While coverage is good, there is an area south of the current station on Washington Street that is beyond the 1.5 mile ISO distance recommendation. The reference to the ISO is included only for completeness. Many communities do not adhere to these guidelines, which are used as an element of property insurance rating.

The territory covered by Station 4 (Dayton Lane) can be covered adequately by the proposed new facility.

Washington Street Site

We evaluated the suitability of the Washington Street site. Because of this sites location in the southern end of the City, its response times to parts of the City are longer than desirable, and represent a marked decline in service from current conditions. In Figure 5, we can see that while downtown can be reached within 3 minutes, areas to the north and east are served in 2-3 minutes longer than under current conditions. Also, resposne patterns for calls in the northern part of the City would require apparatus to drive through downtown, which potentially introduces additional delays due to congestion and narrow streets.

Figure 5: PFD Service Area from Washington Street Site Only.

Recommendations

Consolidated Fire Station Preferred Location -- The maps clearly indicate that that the site at Broad and Park Streets is the preferred choice for a consolidated facility. The downtown location places the station near the highest concentration of calls for service, locates apparatus to be able to respond citywide from a central location, and results in the smallest degradation in response time of all the potential sites.

We recommend that the consolidated facility be located at Park and Broad Streets, or adjacent to that intersection. This location will have no impact in downtown response times, and will position the ladder company to better serve the City. This facility should be built to accommodate all the City's fire apparatus. Even with all companies operating from one centrally-located facility, most of the City will fall within the mileage requirements of the Insurance Services Organization, meaning that there should be no change in the protection classification of the City as a result of this change.
From the standpoint of providing service, the effects of this change on response times will be small, and probably not detectable on a Citywide basis.

The added benefits of being able to use staff more effectively, to balance apparatus in service with flexibility, and reduce the cost of maintaining separate facilities all support this movement.

Figure 6 shows the area of the new station with building footprints, for reference purposes. Both vacant and built-upon parcels are being considered for the site.

Figure 6: Building Footprints in Downtown Area Showing Current and Proposed Sites
Consolidate Facilities and Retain Washington Street Facility - If the proposed consolidated facility and Broad and Park Streets is constructed, and the Washington Street facility is retained, there is essentially
minimal degregation in engine company response time coverage, and the entire City remains within the 1.5 mile engine company response distance, meaning that there should be no risk of losing credit for engine company distribution. ${ }^{4}$

More importantly, no part of the City will see a significant increase in response times as a consequence of this deployment option. Figure 7 shows one-minute response time contours with a two-station configuration. Based on this analysis, we recommend that the two-station configuration be selected as the preferred alternative.

Figure 7: Engine Company Response Times with Two Stations
Mix of Apparatus and Location - The replacement of Engine 134 with a Heavy Rescue apparatus is understandable from the perspective of serving the community's needs. However, as currently situated, when one or both of the City's fly cars are on a call, their engine companies go unstaffed. If consolidation is not achieved, attention should be given to moving apparatus so that EMS calls do not

[^2]have the potential to reduce the City's firefighting capability. In short, the Rescue should be crossstaffed with a fly car, so that EMS calls do not have the potential of reducing the City's firefighting fleet to two engines, or one when they are operating with five personnel on duty.

Consolidation of staff - The consolidation of staff will provide some added benefits in terms of flexibility. For example, having staff housed in one location would allow personnel to staff equipment as needed. In the existing system, paid staff members can only operate the equipment at their fire station. Having personnel able to staff apparatus based on need can be a great benefit operationally, as well as potentially allowing savings from the costs of operating and maintaining five separate facilities. As indicated, in te one-station option, there is a potential for poorer response times to the furthest parts of the City, but this is a worthwhile tradeoff.

Suggestions for Further Study

EMS Fly car Staffing - We attempted to get data on fly car responses, but were unsuccessful within our time requirements. We understand that the City pays for the staffing of these fly cars, and a third EMS vehicle is staffed by the Town of Cortlandt. The balance of service undertaken by these units should be examined to assure a reasonable balance of workload and costs between serving the City and Town.

Long-Range deployment options - Consideration should be given to exploring the feasibility of having volunteers play a greater role in terms of driving and operating apparatus. This would create additional flexibility for utilization of the career staff, and potentially create more appealing working conditions for both paid and volunteer personnel. This is a sensitive issue, but the status quo should be reevaluated to confirm that it is still appropriate.

Overview of Proposed Area for New Fire Headquarters

Site 1 Base Map

Site 1 Scheme

Site 1 Required Acquisition Area

Site 2 Base Map

Site 2 Scheme

MA
Mitchell
Associates Architects

Site 2 Required Acquisition Area

Site 2 Required Demolition

Site 3 Base

$M^{\text {mitchent }}$
Associates Architects

Site 3 Scheme

Site 3 Required Acquisition Area

Site 3 Required Demolition

Site 4 Base Map

Site 4 Scheme

Site 4 Required Acquisition Area

Site 4 Required Demolition

New Apparatus Bay Adjacent Existing Crompond Road Station—Slope Analysis

New Apparatus Bay Adjacent Existing Crompond Road Station—Layout Analysis

Selected Sites For Additional Analysis

Site 3 Exit Slope Analysis

This is Site 2, not 3

Site 3 Site Development Plan
This is Site 2 not 3

This is Site 1 not 4
Site 4 Site Development Plan

Site 3 Site Development Plan With Building Floor Plan

MA
Mitchell
Associates
Architects

Site 3 First Floor Plan

Site 4 Site Development Plan With Building Floor Plan

Mitchell
Associates
Architects

Site 4
First Floor

City of Peekskill Fire Headquarters

CONSTRUCTION SERVICES INC.

SUBJECT:	GENERAL NOTES \& QUALIFICATIONS	EST. NO:
PROJECT:	PEEKSKILL FIRE HEADQUARTERS	EST. BY: EH
LOCATION:	PEEKSKILL, NY	CHKD. BY:
TYPE EST.:	CONCEPTUAL/MASTER PLAN	DATE: $08-08-08$
CLIENT:	MITCHELL ASSOCIATES ARCHITECTS	REV. DATE:

TOTAL PROJECT COST
$P g\left(ـ_{2} \quad\right.$) $\$ 11,167,100$

1. ALL PRICES ARE BASED ON DECEMBER 2007 CONSTRUCTION COSTS W/ 12 MONTHS OF ESCALATION CALCULATED @ 6\% PER ANNUM.
2. THE FOLLOWING ITEMS ARE NOT INCLUDED:
a) PROFESSIONAL FEES
b) FURNITURE, FURNISHINGS AND MOVABLE EQUIPMENT
c) HAZARDOUS MATERIAL ABATEMENT
d) CONSTRUCTION CONTINGENCY COSTS
e) LAND ACQUISITION COSTS
3. ABNORMAL SUBSURFACE CONDITIONS ARE NOT INCLUDED.
4. THIS ESTIMATE IS BASED ON THE FOLLOWING;

SITE PLAN	$08 / 06 / 08$
ELEVATION 1	$08 / 06 / 08$
1ST FLOOR PLAN	$08 / 06 / 08$
2ND FLOOR PLAN	$08 / 06 / 08$
PICTURE	$08 / 06 / 08$

5. THE ESTIMATE FOR PUTNAM VALLEY FIRE STATION WAS USED AS A TEMPLATE FOR THIS ESTIMATE. QUANTITIES AND UNNIT PRICES WERE ADJUSTED TO REFLECT THIS DESIGN \& SITE.

NASCO

CONSTRUCTION SERVICES INC.

SUBJECT: SUMMARY - GENERAL CONSTRUCTION
PROJECT: PEEKSKILL FIRE HEADQUARTERS
LOCATION: PEEKSKILL,NY
TYPE EST.: CONCEPTUAL/MASTER PLAN
CLIENT: MITCHELL ASSOCIATES ARCHITECTS

EST. NO:
EST. BY: EH
CHKD. BY:
DATE: 08-08-08
REV. DATE:
GSF: 33,752

ITEM	DESCRIPTION	Area	\$/GSF		
2.00	SITE WORK	66,000	\$18.95	\$1,250,613	
3.00	CONCRETE	33,752	\$11.41	\$384,946	
4.00	MASONRY	33,752	\$26.90	\$907,974	
5.00	METALS	33,752	\$23.91	\$807,145	
6.00	WOODS \& PLASTICS	33,752	\$13.55	\$457,354	
7.00	THERMAL MOISTURE PROTECTION	33,752	\$23.96	\$808,703	
8.00	DOORS \& WINDOWS	33,752	\$7.78	\$262,610	
9.00	FINISHES	33,752	\$14.16	\$477,795	
10.00	SPECIALTIES	33,752	\$0.92	\$31,047	
11.00	EQUIPMENT	33,752			
14.00	CONVEYING SYSTEMS	33,752	\$1.76	\$59,562	
15.00	PLUMBING	33,752	\$8.93	\$301,485	
15.10	FIRE PROTECTION	33,752	\$4.71	\$158,833	
15.20	HVAC	33,752	\$29.41	\$992,706	
16.00	ELECTRICAL	33,752	\$30.05	\$1,014,297	
	SUBTOTAL GENERAL CONDITIONS - 10.0\%			$\begin{array}{r} \hline \$ 7,915,070 \\ \$ 791,530 \\ \hline \end{array}$	
	subtotal			$\begin{array}{r} \hline 8,706,600 \\ \$ 870,700 \\ \hline \end{array}$	
	SUBTOTAL DESIGN CONTINGENCY - 10.0\%			$\begin{array}{r} \$ 9,577,300 \\ \$ 957,700 \\ \hline \end{array}$	
	SUBTOTAL ESCALATION - 6.0\%			$\begin{array}{r} \hline \hline \$ 10,535,000 \\ \$ 632,100 \\ \hline \end{array}$	\$312
	TOTAL COST			\$11,167,100	
				OST PER SF	\$331

NASCO

CONSTRUCTION SERVICES INC.

SUBJECT:	GENERAL CONSTRUCTION	EST. NO:
PROJECT:	PEEKSKILL FIRE HEADQUARTERS	EST. BY: EH
LOCATION:	PEEKSKILL, NY	CHKD. BY:
TYPE EST.:	CONCEPTUALMASTER PLAN	DATE: $08-08-08$
CLIENT:	MITCHELL ASSOCIATES ARCHITECTS	REV. DATE:

ITEM	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	AMOUNT	TOTAL
2.00	SITE WORK					
	Earthwork					
	a. Clear \& Grub Site - ALLOW	1	LS	10,000.00	10,000	
	b. Strip \& Stockpile Topsoil	2,804	CY	7.00	19,628	
	d. Footing, Frost Wall \& Pit Excavation	656	CY	10.00	6,560	
	e. Backfill Foundations W/ Excavated Material	500	CY	10.00	5,000	
	g. Dispose Of Excess Material (On Site)	500	CY	5.00	2,500	
	h. Erosion Control	1	LS	10,000.00	10,000	
	Demolition	1	LS	100,000	100,000	
	Site Utilities					
	a. Site Drainage					
	1. Trench Excavation	4,305	CY	8.00	34,440	
	2. Gravel Fill	765	CY	40.00	30,600	
	3. Filter Fabric	15,400	SF	0.25	3,850	
	4. Backfill W/ Excavated Material	3,164	CY	8.00	25,312	
	5. Dispose Of Excess Material (On Site)	1,022	CY	5.00	5,110	
	6. 15" HDPE	550	LF	35.00	19,250	
	7. 48 " Subsurface Storage \& Infiltration - ALLOW	700	LF	150.00	105,000	
	8. Distribution Piping - ALLOW	172	LF	23.00	3,956	
	9. Catch Basins	8	EA	1,500.00	12,000	
	10. Storm Manholes	2	EA	1,250.00	2,500	
	11. Distribution Boxes	3	EA	500.00	1,500	
	12. Oil Separator - ALLOW	1	EA	5,000.00	5,000	
	d. Electric Service - ALLOW		LS	20,000.00	20,000	
	e. Gas Service	By Utility Com	mpany			
	Subtotal				422,206	

NASCO
CONSTRUCTION SERVICES INC.
SUBJECT: GENERAL CONSTRUCTION
EST. NO:
PROJECT: PEEKSKILL FIRE HEADQUARTERS
LOCATION: PEEKSKILL, NY
TYPE EST.: CONCEPTUAL/MASTER PLAN
CLIENT: MITCHELL ASSOCIATES ARCHITECTS
EST. BY: EH
CHKD. BY:
DATE: 08-08-08
REV. DATE:

pASCO
CONSTRUCTION SERVICES INC.

SUBJE GENERAL CONSTRUCTION	EST. NO:
PRONE PEEKSKILL FIRE HEADQUARTERS	EST. BY: EH
LOCAl PEEKSKILL, NY	CHKD. BY:
TYPE ICONCEPTUAL/MASTER PLAN	DATE: $08-08-08$
CLIEN MITCHELL ASSOCIATES ARCHITECTS	REV. DATE:

3.00 CONCRETE
a. Cont. Conc. Footings
b. Conc. Spread Footings
c. Conc. Piers
d. Conc Walls (Foundation Wall)
e. Conc. Frost Walls
f. Conc. Elevator Slab
g. Conc. Elevator Pit Walls
h. Grade Beam @ Apparatus Bay Aproach Slab
i. Bollard Footings
j. 7" Conc. Slab On Grade W/ Gravel Fill @ Apparatus Bay
k. 4" Conc. Slab On Grade W/ Gravel Fill @ Remaining Spaces
I. 2nd Floor Conc. (On Mil. Deck)
m. Mezz. Conc. (On Mil. Deck)
n. Conc. Fill (On MIl. Pan Stairs)
o. Conc. Fill (On MI. Pan Stair Landings)
p. Conc. Locker Bases

4.00 MASONRY

a. Brick
b. Precast
c. 12" CMU Backup @ Apparatus Bay
d. Precast Sills
e. Interior CMU Walls

1. 12" CMU
2. $8^{\prime \prime} \mathrm{CMU}$

Precast Specials
Heads

EST. NO:
EST. BY: EH
DATE: 08-08-08
REV. DATE:

Heads

CONSTRUCTION SERVICES INC.

SUBJECT: GENERAL CONSTRUCTION
PROJECT: PEEKSKILL FIRE HEADQUARTERS
LOCATION: PEEKSKILL, NY
TYPE EST.: CONCEPTUAL/MASTER PLAN
CLIENT: MITCHELL ASSOCIATES ARCHITECTS

EST. NO:
EST. BY: EH
CHKD. BY:
DATE: 08-08-08
REV. DATE:

ITEM	
5.00	METALS
	a. \quad Structural Steel at $10 \#$ per SF

b. Mtl. Floor Deck
c. Loose Lintels

1. Windows \& Doors
2. Apparatus Bay Doors
d. Mtl. Pan Stairs
e. Mtl. Pan Landings
f. Full Height Stair Railings
g. Wall Mounted Handrails
h. Mezz. Railing
i. Mezz Railing Gate
j. Conc. Filled Bollards
k. Misc. Metals

6.00 WOODS \& PLASTICS

Rough Carpentry

a. L.G. 6" Mtl. Wall Framing
b. L.G. 6" Mtl. Wall Framing @ Deck (Half Wall)
c. L.G. Mtl. Truss System
d. L.G. Mtl. Build Over Framing
e. Dens Glass Wall Sheathing
f. Roof Sheathing
g. Sub Fascias \& Rakes
h. Misc. Rough Blocking

Finish Carpentry

a. Corian Window Sills
b. Sloped Laminate Sills @ Radio Rm.
c. Display Cases
d. Millwork @ Radio Room - ALLOW

1. Work Station
2. Full Height Cabinet
e. Kitchen @ Day Rm. - ALLOW
3. Wall Cabinets
4. Base Cabinets
5. Counter Top
f. Millwork @ Fill Room - ALLOW
. 1 Work Bench
. 2 Base Cabinet w/ Counter Top . 3 Wall Cabinets

NASCO

CONSTRUCTION SERVICES INC.

SUBJECT: GENERAL CONSTRUCTION
EST. NO:
PROJECT: PEEKSKILL FIRE HEADQUARTERS
EST. BY:
CHKD. BY:
EH
LOCATION: PEEKSKILL, NY
TYPE EST.: CONCEPTUAL/MASTER PLAN
CLIENT: MITCHELL ASSOCIATES ARCHITECTS
DATE: 08-08-08
REV. DATE:

7.00 THERMAL MOISTURE PROTECTION

a. Foundation Waterproofing
b. Foundation Perimeter Insulation
c. Elevator Pit Waterproofing
d. Cont. Footing Drain
e. Trench Drain
f. $21 / 2^{\prime \prime}$ Rigid Insul
g. 2" Rigid Insul
h. $\mathrm{R}: 30$ Insulation
i. $\quad \mathrm{R}: 38$ Insulation
j. EIFS
k. EIFS @ Deck Half Wall
I. EIFS Soffits @ Entries
m. Vented Mtl. Soffits @ Rakes \& Eaves
n. Formed Mtl. Trim @ Fascias \& Rakes
o. EPDM Roof
p. Slate Roof
q. Copper Roof
r. Scuppers
s. Gutters
t. Leaders - ALLOW
u. Misc. Caulking \& Sealants

NASCO

CONSTRUCTION SERVICES INC.

SUBJECT:	GENERAL CONSTRUCTION	EST. NO:
PROJECT:	PEEKSKILL FIRE HEADQUARTERS	EST. BY: EH
LOCATION:	PEEKSKILL, NY	CHKD. BY:
TYPE EST.:	CONCEPTUAL/MASTER PLAN	DATE: 08-08-08
CLIENT:	MITCHELL ASSOCIATES ARCHITECTS	REV. DATE:

REV. DATE:

ITEM	DESCRIPTION
8.00	DOORS \& WINDOWS
	a. Overhead Doors Apparatus Bay Doors
	b. Alum. Glass Entrance Doors, Frames \& Hardware 1. Single (Exterior)
	2. Double (Exterior)
	3. Double (Interior)
	4. Transoms
	c. Solid Core Wood Doors, H.M. Frames \& Hardware 1. Single
	2. Double
	d. Hollow Metal Doors, Frames \& Hardware 1. Single (Exterior)
	2. Double (Exterior)
	3. Single
	4. Double
	e. Bi-Fold Pass Thru Window @ Kitchen
	f. Alum. Clad Wood Windows
	g. Interior Glazing
	h. Mezzanine Training Hatch

9.00 FINISHES

a. Gypsum Partitions (Taped \& Spackled)

1. $41 / 2^{\prime \prime}$ Wall
2. $6^{\prime \prime}$ Wall
3. Chase Wall
4. Furring
5. $6^{\prime \prime}$ Half Wall
6. 5/8" Gyp. Board (On L.G. Mtl. Framing)
b. Floor
7. Ceramic Tile
8. Quarry Tile @ Kitchen \& Pantry
9. VCT
10. Carpet - Allow $\$ 20 /$ SY For Material
11. Epoxy System on Apparatus Floor
12. Epoxy System on Apparatus Support
13. Seal Exposed Concrete
14. Rubber Flooring @ Gym
c. Ceiling
15. Paint Exposed
16. ACT
17. Kitchen ACT
18. Bathroom ACT
19. Misc. Soffits - ALLOW
d. Base
20. Ceramic Tile
21. Quarry Tile
22. Rubber

QUANTITY	UNIT	UNIT PRICE	AMOUNT	TOTAL
10	EA	5,800.00	58,000	
1	EA	3,750.00	3,750	
2	PAIRS	7,500.00	15,000	
2	PAIRS	6,750.00	13,500	
20	SF	80.00	1,600	
53	EA	850.00	45,050	
5	PAIRS	1,500.00	7,500	
5	EA	1,200.00	6,000	
1	PAIRS	2,100.00	2,100	
15	EA	1,000.00	15,000	
4	PAIRS	1,900.00	7,600	
1	EA	500.00	500	
1,167	SF	70.00	81,690	
150	SF	40.00	6,000	
1	EA	1,250.00	1,250	
				7.78
13,105	SF	6.00	78,630	
2,955	SF	6.50	19,208	
1,023	SF	7.50	7,673	
3,143	SF	3.75	11,786	
19	LF	60.00	1,140	
11,282	SF	2.25	25,385	
5,024	SF	9.00	45,216	
824	SF	12.00	9,888	
3,735	SF	2.75	10,271	
365	SY	30.00	10,950	
7,243	SF	6.00	43,458	
1,535	SF	4.50	6,908	
1,000	SF	0.25	250	
1,000	SF	12.00	12,000	
10,577	SF	1.25	13,221	
12,131	SF	4.00	48,524	
428	SF	6.50	2,782	
928	SF	5.00	4,640	
1	LS	10,000.00	10,000	
1,522	LF	8.50	12,937	
213	LF	12.00	2,556	
1,443	LF	3.00	4,329	
			381,752	
			8/4/2009	PM

CONSTRUCTION SERVICES INC.

SUBJECT: GENERAL CONSTRUCTION
PROJECT: PEEKSKILL FIRE HEADQUARTERS
LOCATION: PEEKSKILL, NY
TYPE EST.: CONCEPTUAL/MASTER PLAN
CLIENT: MITCHELL ASSOCIATES ARCHITECTS

EST. NO:
EST. BY: EH
CHKD. BY:
DATE: $\overline{08-08-08}$
REV. DATE:

ITEM	DESCRIPTION	QUANTITY	UNIT	$\begin{gathered} \text { UNIT } \\ \text { PRICE } \end{gathered}$	AMOUNT	TOTAL
	Subtotal Brought Forward				381,752	
	e. Wall					
	1. Ceramic Tile	3,568	SF	8.00	28,544	
	2. Paint GWB	28,356	SF	0.90	25,520	
	3. Epoxy Paint @ Conc \& CMU Walls	16,266	SF	1.65	26,839	
	f. Paint 1. Doors \& Frames	91	LVS	150.00	13,650	
	g. Misc. Finishes	1	LS	5,000.00	5,000	
						481,305
						14.16
10.00	SPECIALTIES					
	a. Toilet Partitions					
	1. Standard	6	EA	750.00	4,500	
	2. Handicap	4	EA	850.00	3,400	
	3. Urinal Screen	3	EA	250.00	750	
	b. Privacy Curtain @ Toilet Room	2	EA	50.00	100	
	c. Toilet Accessories	1	LS	5,000.00	5,000	
	d. Lockers	23	EA	275.00	6,325	
	e. Benches - ALLOW	10	EA	200.00	2,000	
	f. Cupola @ Roof - Complete	1	LS	5,000.00	5,000	
	g. Fire Extinguishers \& Cabinets - ALLOW	1	LS	500.00	500	
	h. Flag Poles	1	LS	2,200.00	2,200	
	j. Signage	1	LS	1,500.00	1,500	
						31,275
						0.92
11.00	EQUIPMENT		LS			
	a. Commercial St. Stl. Kitchen - ALLOW			75,000.00		
14.00	CONVEYING SYSTEMS	1				
	a. 2 Stop Elevator, 1 Opening Per Stop		EA	60,000.00	60,000	

NASCO

CONSTRUCTION SERVICESINC.

SUBJECT: MEPS
PROJECT: PEEKSKILLL FIRE HEADQUARTERS
LOCATION: PEEKSKILL, NY
TYPE EST.: CONCEPTUAL/MASTER PLAN
CLIENT: MITCHELL ASSOCIATES ARCHITECTS
EST. NO:
EST. BY: EH
CHKD. BY:
\qquad
DATE: 08-08-08

CLIEN: MICHELLASSOCIATESARCHIECTS

REV. DATE:

ITEM	
15.00	PLUMBING
	a. Fixtures
	b. 6" Cast Iron Pipe For Trench Drain
	c. Underslab Bldg Waste
	d. Interior Drains
	e. 75 Gal. Gas Fired DHW Heaters
	f. Decon Shower Unit
	g. Radiant Heating System for Apparatus Bay
	h. Hose Reels

15.10 FIRE PROTECTION
a. Apparatus Bay
b. Remaining Spaces
15.20 HVAC
a. Apparatus Bay Ventilation
b. Remaining Spaces

16.00 ELECTRICAL

a. Apparatus Bay
b. Remaining Spaces
c. Site Electric
. 1 Pole Mounted Fixture
. 2 Building Mounted Fixture

[^0]: 2 The Columbian Hose Company on Dayton Lane is the first company to close.

[^1]: ${ }^{3}$ We had access to a sample of fire incidents from the PFD records system, but did not have the ability to review EMS incidents. This did not have a material effect on our recommendations.

[^2]: 4 The information on the Insurance Services Office fire Suppression Rating Schedule (FSRS) is included for reference purposes. We do not advocate its use as a primary decision criterion in deployment of facilities and personnel.

